Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions-ITS1, IGS, TEF-1α, and β-TUB-for robust species differentiation of Fusarium spp. isolates from post-harvest maize in Bulgaria. The protocol enhances species resolution, especially for closely related taxa within the Fusarium fujikuroi species complex (FFSC). A newly optimized multiplex PCR strategy was developed using three primer sets, each designed to co-amplify a specific pair of toxigenic genes: fum6/fum8, tri5/tri6, and tri5/zea2. Although all five genes were analyzed, they were detected through separate two-target reactions, not in a single multiplex tube. Among 17 identified isolates, F. proliferatum (52.9%) dominated, followed by F. verticillioides, F. oxysporum, F. fujikuroi, and F. subglutinans. All isolates harbored at least one toxin biosynthesis gene, with 18% co-harboring genes for both fumonisins and zearalenone. This dual-protocol approach enhances diagnostic precision and supports targeted mycotoxin risk management strategies.
Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria.
阅读:3
作者:Stoeva Daniela, Gencheva Deyana, Radoslavov Georgi, Hristov Peter, Yordanova Rozalina, Beev Georgi
| 期刊: | Methods and Protocols | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 9; 8(4):78 |
| doi: | 10.3390/mps8040078 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
