Transcriptome analysis of nitrogen assimilation preferences in Burkholderia sp. M6-3 and Arthrobacter sp. M7-15.

阅读:5
作者:Liu Ran, Qin Hongyi, Wang Qian, Chu Cheng, Jiang Yunbin, Deng Huan, Han Cheng, Zhong Wenhui
INTRODUCTION: Ammonium (NH(4) (+)) and nitrate (NO(3) (-)) are the two main forms of inorganic nitrogen (N) that exist in soil and both can be absorbed and utilized by plants. As a vast and crucial biome, soil microorganisms are responsible for mediating the inorganic N assimilation process and enhancing nitrogen use efficiency. Understanding how these microorganisms assimilate different forms of inorganic nitrogen is crucial. There are a handful of microorganisms that play a dominant role in the process of soil inorganic nitrogen assimilation and have a significant advantage in abundance. However, microbial preferences for ammonium or nitrate, as well as differences in their metabolic pathways under co-existing ammonium and nitrate conditions, remain unclear. METHODS: In this study, two microbial strains with nitrogen assimilation advantages, Burkholderia sp. M6-3 and Arthrobacter sp. M7-15 were isolated from an acidic Chinese soil and then incubated by different sources of inorganic N to investigate their N preferences. Furthermore, RNA sequencing-based transcriptome analysis was used to map the metabolic pathways of the two strains and explore their explanatory potential for N preferences. RESULTS: The results showed that strain M6-3 preferred to utilize NH(4) (+) while strain M7-15 preferred to utilize NO(3) (-). Although both strains shared similar nitrogen metabolic pathways, the differential expression of the glutamine synthetase-coding gene glnA played a crucial role in regulating their inorganic N preferences. This inconsistency in glnA expression may be attributed to GlnR, a global regulator of nitrogen utilization. DISCUSSION: This research strengthens the theoretical basis for exploring the underlying causes of differential preferences for inorganic N forms and provided key clues for screening functional microorganisms to ultimately enhance inorganic nitrogen use efficiency.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。