Primary human aortic valvular interstitial cells (pHAVICs) play crucial roles in maintaining the mechanical structure and microenvironmental homeostasis of aortic valves. Pathologic processes such as inflammation, senescence, apoptosis, and metabolic disorders of valvular interstitial cells often lead to calcified aortic valve disease (CAVD). However, the lack of clinically relevant cellular models has impeded our understanding of CAVD. Here, we immortalized primary HAVICs with SV40 LTA. The iHAVICs (immortalized human aortic valvular interstitial cells) were maintained in a nonsenescent state and still had the potential to be induced into a senescent phenotype. In calcification induction experiments, iHAVICs can be induced to transform into osteogenic phenotypes via different stimuli via different pathways, accompanied by variations in different markers. In conclusion, we established and characterized a novel human immortalized aortic valve interstitial cell line as a practical in vitro experimental tool for the study of aortic valve calcification disease.
Establishment and characterization of a novel immortalized human aortic valve interstitial cell line.
阅读:3
作者:Wang Zihao, Rao Zhenqi, Wang Yixuan, Dong Nianguo
期刊: | Scientific Reports | 影响因子: | 3.900 |
时间: | 2025 | 起止号: | 2025 Mar 29; 15(1):10917 |
doi: | 10.1038/s41598-025-85909-z |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。