Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca(2+) signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4Â h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat.
阅读:3
作者:Duarte-Delgado Diana, Vogt Inci, Dadshani Said, Léon Jens, Ballvora Agim
期刊: | Plant Molecular Biology | 影响因子: | 3.800 |
时间: | 2024 | 起止号: | 2024 Nov 1; 114(6):119 |
doi: | 10.1007/s11103-024-01523-z |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。