Homologous relationship between FabG involved in fatty acid biosynthesis and SDR on chromosome II in the multi-chromosome pathogen Vibrio anguillarum.

阅读:2
作者:Kim Dong-Gyun, Park So Young, Rafiquzzaman S M, Lee Jong Min
Vibrio anguillarum threatens fish and larval farming industries and human health worldwide. The identification of bacterial adaptation and responses to stress due to environmental changes is vital for establishing a response strategy for pathogenic Vibrio. Previously, short-chain dehydrogenase/reductase (SDR) was identified on chromosome II of the multichromosomal V. anguillarum. In this study, a comparison of SDR and the enzyme FabG-1b (encoded on chromosome I and responsible for the β-ketoacyl acyl carrier protein (ACP) reductase in fatty acid biosynthesis (FAS II)) showed that the amino acid sequence homology was only 33.2%; however, the core of functionality, which includes the NAD(P)-binding domain and the conserved region of the active site, the topologies predicted using sequence-based homology modeling, and the quaternary homotetramer-type structures showed a significant similarity. FabG-1b was specific to the substrates fluorinated and halogenated aliphatic ketones, aromatic ketones, and aromatic β-ketoesters and SDR toward non-fluorinated and non-halogenated aliphatic ketones, aromatic ketones, and non-aromatic β-ketoesters. This complementary catalytic efficiencies of the two enzymes on various substrates conclusively supports the hypothesis that the two enzymes are likely homologs. This is the first study to report potential paralogous enzymes FabG-1b and SDR in Vibrio. This information improves our understanding of bacterial FAS for establishing strategies to overcome infectious diseases caused by pathogenic strains and identify targets for developing new antibacterial agents.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。