12-Lipoxygenase Inhibition Improves Glycemia and Obesity-associated Inflammation in Male Human Gene Replacement Mice

12-脂氧合酶抑制可改善雄性人类基因替换小鼠的血糖水平和肥胖相关炎症

阅读:3
作者:Kerim B Kaylan ,Titli Nargis ,Kayla Figatner ,Jiayi E Wang ,Sarida Pratuangtham ,Advaita Chakraborty ,Isabel Casimiro ,Jerry L Nadler ,Matthew B Boxer ,David J Maloney ,Ryan M Anderson ,Raghavendra G Mirmira ,Sarah A Tersey
Obesity-associated inflammation is characterized by macrophage infiltration into peripheral tissues, contributing to the progression of prediabetes and type 2 diabetes. 12-lipoxygenase (12-LOX) catalyzes the formation of pro-inflammatory eicosanoids and promotes the migration of macrophages, yet its role in obesity-associated inflammation remains incompletely understood. Furthermore, differences between mouse and human orthologs of 12-LOX have limited efforts to study existing pharmacologic inhibitors of 12-LOX. In this study, we used a human gene replacement mouse model in which the gene encoding mouse 12-LOX (Alox15) is replaced by the human ALOX12 gene. As a model of obesity and dysglycemia, we administered male mice a high-fat diet. We subsequently investigated the effects of VLX-1005, a potent and selective small molecule inhibitor of human 12-LOX. Oral administration of VLX-1005 resulted in improved glucose homeostasis, decreased β-cell dedifferentiation, and reduced macrophage infiltration in islets and adipose tissue. Analysis of the stromal vascular fraction from adipose tissue showed a reduction in myeloid cells and cytokine expression with VLX-1005 treatment, indicating decreased adipose tissue inflammation. In a distinct mouse model in which Alox15 was selectively deleted in myeloid cells, we observed decreased β-cell dedifferentiation and reduced macrophage infiltration in both islets and adipose tissue, suggesting that the effects of VLX-1005 may relate to the inhibition of 12-LOX in macrophages. These findings highlight 12-LOX as a key factor in obesity-associated inflammation and suggest that 12-LOX inhibition could serve as a therapeutic strategy to improve glucose homeostasis and peripheral inflammation in the setting of obesity and type 2 diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。