Computational modeling and experimental validation of the interaction between tumor biomarker mesothelin and an engineered targeting protein with therapeutic activity.

阅读:2
作者:Piccardi Margherita, Butera Valeria, Sardo Ignazio, Landi Stefano, Gemignani Federica, Barone Giampaolo, Spinello Angelo, Moore Sarah J
Mesothelin (MSLN) is a cell surface glycoprotein overexpressed in many solid tumors, which is known to interact with cancer antigen CA125/MUC16, promoting cancer cell adhesion and metastasis. MSLN has been used as a target of multiple antibody-based therapeutic strategies, but their efficacy remains limited, potentially due to inherent pharmacokinetics conferred by the structure of antibodies (~150 kDa). To provide an alternative targeting molecule, we engineered a small scaffold protein derived from the tenth domain of human fibronectin type III (Fn3, 12.8 kDa) to bind MSLN with nanomolar affinity as a theranostic agent for MSLN-positive cancers. In this study, we explored the Fn3-MSLN interaction site through computational modeling and experimentally validated the model through domain-level and fine epitope mapping. Fn3-MSLN binding was predicted by a consensus approach, comparing multiple protein-protein docking software, the deep-learning-based algorithm AlphaFold3, and performing molecular dynamics (MD) simulations. To validate the prediction, full-length MSLN, single MSLN domains, or combinations of domains were expressed on the yeast surface, and Fn3 binding to displayed MSLN domains was measured by flow cytometry. The employed algorithms predicted two distinct binding modes for Fn3. Overall, experimental data agreed with our in silico prediction resulting from the AlphaFold3 model, confirming that MSLN domains B and C are predominantly involved in the interaction.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。