Intersectin and endophilin condensates prime synaptic vesicles for release site replenishment

Intersectin 和 endophilin 凝聚突触小泡,为释放位点的补充做好准备。

阅读:2
作者:Tyler H Ogunmowo ,Christian Hoffmann # ,Chintan Patel # ,Renee Pepper # ,Han Wang # ,Sindhuja Gowrisankaran ,Johanna Idel ,Annie Ho ,Sumana Raychaudhuri ,Brady J Maher ,Benjamin H Cooper ,Ira Milosevic ,Dragomir Milovanovic ,Shigeki Watanabe
Following synaptic vesicle fusion, vacated release sites are replenished immediately by new vesicles for subsequent neurotransmission. These replacement vesicles are assumed to be located near release sites and used by chance. Here we find in mouse hippocampal excitatory synapses that replacement vesicles are clustered near the active zone where release sites reside by intersectin-1. Specifically, intersectin-1 forms dynamic molecular condensates with endophilin A1 and sequesters vesicles around this region. In the absence of intersectin-1, fewer vesicles cluster within 20 nm of the plasma membrane, and consequently vacated sites cannot be replenished rapidly, leading to synaptic depression. Mutations in intersectin-1 that disrupt endophilin A1 binding result in similar phenotypes. In the absence of endophilin A1, intersectin-1 is mislocalized, and this replacement pool of vesicles cannot be accessed, suggesting that endophilin A1 is needed to mobilize these vesicles. Thus, our work describes the replacement zone within a synapse, where replacement vesicles are stored for replenishment of the release site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。