Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein-coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH(2) (FMRFamide (FMRFa)), which activates mollusk and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily. Here, we explored the structure-activity relationships determining FMRFa potency at mollusk and annelid FaNaCs in the light of emerging structural data, using synthetic neuropeptide analogs, heterologous expression, and two-electrode voltage clamp. Substitutions of the FMRFa N-terminal phenylalanine residue (F1) and methionine residue (M2) decreased or abolished FMRFa potency at mollusk Aplysia kurodai FaNaC but had little effect at annelid Malacoceros fuliginosus FaNaC1. Conversely, F4 substitutions had little effect on FMRFa potency at A. kurodai FaNaC but either abolished, strongly decreased, or slightly increased potency at M. fuliginosus FaNaC1. Accordingly, recently published high-resolution FaNaC structures show that F1 and F4 residues orient deep into the neuropeptide-binding pockets of A. kurodai FaNaC and M. fuliginosus FaNaC1, respectively. We also use noncanonical amino acid substitutions in A. kurodai FaNaC to describe the physico-chemical determinants of FMRFa F1 binding to A. kurodai FaNaC aromatic side chains. Our results show that the "deeper" of the two FMRFa phenylalanine residues in the binding pocket is crucial for FMRFa potency despite the peptide orienting very differently into the homologous binding sites of two closely related receptors.
Flipped binding modes for the same agonist in closely related neuropeptide-gated ion channels.
同一激动剂在密切相关的神经肽门控离子通道中表现出不同的结合模式
阅读:8
作者:Claereboudt Emily J S, Dandamudi Mowgli, Longueville Léa, Harb Hassan Y, Lynagh Timothy
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 124(7):1049-1057 |
| doi: | 10.1016/j.bpj.2025.01.004 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
