BACKGROUND: The main challenge in new drug development is accurately predicting the human response in preclinical models. METHODS: In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane. RESULTS: All models successfully replicated the structural and functional aspects of the intestinal barrier. The 3D bioprinted intestinal model, however, demonstrated superior epithelial barrier integrity enhanced tight junction formation, microvilli development, and increased mucus production. When subjected to Ibuprofen, the 3D bioprinted model provided a more predictive response, underscoring its potential as a reliable in vitro tool for drug toxicity testing. CONCLUSION: Our 3D bioprinted intestinal model presents a robust and predictive platform for drug toxicity assessments, significantly reducing the need for animal testing. This model not only aligns with ethical testing protocols but also offers enhanced accuracy in predicting human responses, thereby advancing the field of drug development.
Biofabricated 3D Intestinal Models as an Alternative to Animal-Based Approaches for Drug Toxicity Assays.
阅读:4
作者:Tofani Larissa Bueno, Avelino Thayná Mendonça, de Azevedo Rafael Júnior, Elias Giovanna Blazutti, Ganzerla Melissa Dibbernn, Terra Maiara Ferreira, Rodrigues Vanessa Kiraly Thomaz, Rabelo Renata Santos, Harb Samarah Vargas, Figueira Ana Carolina Migliorini
| 期刊: | Tissue Engineering and Regenerative Medicine | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Feb;22(2):181-194 |
| doi: | 10.1007/s13770-024-00694-6 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
