A pathogenic variant of AMOT leads to isolated X-linked congenital hydrocephalus due to N-terminal truncation.

阅读:2
作者:Hastar Nurcan, Daum Hagit, Kardos-Török Nikoletta, Ganz Gael, Obendorf Leon, Vajkoczy Peter, Elpeleg Orly, Knaus Petra
Congenital hydrocephalus is a life-threatening condition that might affect brain development by increasing the pressure on the brain parenchyma. Here, we describe 6 male patients from 1 family, all presenting with an isolated X-linked congenital hydrocephalus. Exome sequencing identified a likely pathogenic variant of angiomotin (AMOT) that segregated with the phenotype in the extended family. We show that the variant, affecting the first methionine, translated into a shorter AMOT protein lacking 91 amino acids from the N-terminus. Mechanistically, we unraveled that the absence of the N-terminus leads to abnormally increased AMOT protein levels due to the loss of both the N-degron degradation signal and the tankyrase-binding domain. Altered degradation of AMOT disrupted the barrier integrity of the cells. Thus, the identified AMOT variant likely underlies the clinical presentation of isolated X-linked hydrocephalus in this family, and our data underscore the importance of tight regulation of AMOT protein level in the brain. AMOT now joins the list of genes involved in congenital hydrocephalus in humans. These findings are instrumental for the genetic counseling of affected families.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。