The Drosophila pseudokinase Tribbles (Trbl) shares conserved functions with human TRIB3 to bind and inhibit Akt phosphorylation-activation by the Insulin Receptor (InR) to reduce insulin responses; consistent with this, increased levels of human TRIB3 are linked to type 2 diabetes. Here, we show that in fat body cells of well-fed Drosophila larvae, Trbl expression is low and predominantly in the nucleus while fasting or genetic reduction of insulin signaling resulted in increased Trbl expression and Trbl protein translocation to the plasma membrane. An E/G mutation in the Trbl pseudokinase kinase activation loop dominantly interfered with Trbl function leading to increased Akt activity, increased stability of Trbl substrates, including Trbl itself, and aberrant redistribution of Trbl multimers to the membrane. Several strategies designed to increase Akt activity were sufficient to translocate Trbl to the membrane, consistent with the notion that subcellular trafficking of Trbl to the fat body cell membrane acts a rheostat to reduce the strength of Akt-mediated insulin responses, counter to the InR, which has been shown to redistribute away from the membrane to modulate insulin signaling.
The Drosophila pseudokinase Tribbles translocates to the fat body membrane in response to fasting to modulate insulin sensitivity.
阅读:3
作者:Fischer Zachary, Nauman Christopher, Shayestehpour Shima, Pence Laramie, Bouyain Samuel, Yao Xiaolan, Dobens Leonard L
期刊: | Development | 影响因子: | 3.600 |
时间: | 2025 | 起止号: | 2025 Apr 15; 152(8):dev204493 |
doi: | 10.1242/dev.204493 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。