Establishing the Role of Liver Fatty Acid-Binding Protein in Post-Golgi Very-Low-Density Lipoprotein Trafficking Using a Novel Fluorescence-Based Assay.

利用新型荧光检测方法确定肝脏脂肪酸结合蛋白在高尔基体后极低密度脂蛋白运输中的作用

阅读:7
作者:Winterfeldt Kayli, Tasin Fahim Rejanur, Siddiqi Shadab A
The liver plays a crucial role in maintaining lipid homeostasis by converting toxic free fatty acids into VLDL, which the body uses for energy. Even minor changes in VLDL formation and secretion can result in serious health conditions such as atherosclerosis and non-alcoholic fatty liver disease. Despite the importance of VLDL, the proteins and signaling pathways involved in its regulation remain largely unknown. This study aims to develop a novel methodology to study intracellular VLDL transport events and explore the role of liver fatty acid-binding protein (LFABP) in VLDL transport and secretion. Current methods to study VLDL are often tedious, time-consuming, and expensive, underscoring the need for an alternative approach. We designed a new immunofluorescence-based assay to track the formation and secretion of VLDL in cells over time using fluorescently tagged TopFluor oleic acid. Confocal microscopy confirmed that TopFluor oleic acid enters hepatocytes and colocalizes with the ER, Golgi, and plasma membrane. Additionally, the collection of cell culture media revealed that TopFluor was incorporated into VLDL particles, as confirmed by fluorescence readings and ApoB100 immunoblots. This novel assay provides a valuable tool for further research into the mechanisms of VLDL regulation and the development of potential therapeutic targets for related diseases. Utilizing this assay, we identified LFABP as a key regulatory protein in post-Golgi VLDL trafficking. Our data suggest that LFABP plays a crucial role in this process, and its functional impairment leads to reduced VLDL secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。