Modulation of Tumor Metabolism in Acute Leukemia by Plant-Derived Polymolecular Drugs and Their Effects on Mitochondrial Function.

阅读:11
作者:Arévalo Cindy, Carlosama Carolina, Rojas Laura, Cala Mónica P, Hamon Marie-Paule, Friguet Bertrand, Barreto Alfonso, Fiorentino Susana
The analysis of tumor metabolism offers promising opportunities for developing new therapeutic strategies. Plant-derived polymolecular drugs can regulate cellular metabolism, making them potential candidates for treatment. This study examined the metabolic effects of plant-derived polymolecular drugs-P2Et, Anamu-SC, and Esperanza-on leukemic cell lines (lymphoid and myeloid types) and primary leukemic blasts. The metabolic analysis included oxidative status, glucose consumption, extracellular acidification, oxygen consumption, mitochondrial dynamics, and untargeted metabolomics. Additionally, the effect of co-treatment with conventional chemotherapeutic drugs was investigated. Results showed that P2Et and Anamu-SC reduced the viability and proliferation of all tumor cell lines, exhibiting antioxidant effects. Anamu-SC decreased reactive oxygen species levels in lymphoid tumor cells. Mitochondrial activity was selectively affected by the plant-derived polymolecular drugs, with Anamu-SC and Esperanza causing more significant, potentially reversible damage compared to P2Et. Anamu-SC and Esperanza increased levels of phosphatidylcholines and carnitines. The co-administration of plant-derived polymolecular drugs with chemotherapeutics improved the cytostatic efficacy of cytarabine. In conclusion, this research highlights the promising pharmacological activity of Anamu-SC and Esperanza as mitocans for the treatment of acute leukemia. The study emphasizes the practical significance of combining plant-derived polymolecular drugs with conventional chemotherapeutics to enhance their cytostatic efficacy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。