BACKGROUND: Bortezomib (BTZ), a selective 26Â S proteasome inhibitor, is clinically useful in treating multiple myeloma and mantle cell lymphoma. BTZ exerts its antitumor effect by suppressing nuclear factor-B in myeloma cells, promoting endothelial cell apoptosis, and inhibiting angiogenesis. Despite its success, pulmonary complications, such as capillary leak syndrome of the vascular hyperpermeability type, were reported prior to its approval. Although the incidence of these complications has decreased with the use of steroids, the underlying mechanism remains unclear. This study aims to investigate how BTZ influences endothelial cell permeability. METHODS: We examined the impact of BTZ on vascular endothelial cells, focusing on its effects on RhoA and RhoC proteins. Stress fiber formation, a known indicator of increased permeability, was assessed through the Rho/ROCK pathway. RESULTS: BTZ was found to elevate the protein levels of RhoA and RhoC in vascular endothelial cells, leading to stress fiber formation via the Rho/ROCK pathway. This process resulted in enhanced vascular permeability in a Rho-dependent manner. Furthermore, the stress fiber formation induced by BTZ had synergistic effects with the inflammatory mediator histamine. CONCLUSIONS: Our findings suggest that BTZ accumulates RhoA and RhoC proteins in endothelial cells, amplifying the inflammatory mediator-induced increase in the active GTP-bound state of Rho, thereby exaggerating vascular permeability during pulmonary inflammation. This study provides novel insights into the molecular mechanism underlying the pulmonary complications of BTZ, suggesting that BTZ may enhance inflammatory responses in pulmonary endothelial cells by increasing RhoA and RhoC protein levels.
Bortezomib induces Rho-dependent hyperpermeability of endothelial cells synergistically with inflammatory mediators.
阅读:3
作者:Nishima Shunichi, Kashiwada Takeru, Saito Yoshinobu, Yuge Shinya, Ishii Tomohiro, Matsuda Kuniko, Kamio Koichiro, Seike Masahiro, Fukuhara Shigetomo, Gemma Akihiko
期刊: | BMC Pulmonary Medicine | 影响因子: | 2.800 |
时间: | 2024 | 起止号: | 2024 Dec 18; 24(1):617 |
doi: | 10.1186/s12890-024-03387-x |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。