Ozone (O(3)) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O(3) exposure (0.8 ppm, 3 h) in young (8-14-wk old), middle-aged (44-52-wk old), and old (>80-wk old) mice. Furthermore, this work compares the impact of a clinically relevant mutation in the gene encoding for the alveolar epithelial type 2 specific surfactant protein C. Aging was associated with reduced lung resistance and increases in respiratory elastic properties, the latter of which was exacerbated in SP-C mutant mice. Ozone exposure produced focal injury localized at the terminal bronchiole-to-alveolar junctions and enlarged alveoli in aged SP-C mutant lungs. Flow cytometric analysis revealed increases in mononuclear myeloid abundance in aged SP-C mutant lungs, paired with a contraction in CD8(+) expressing cells. Expansion of tertiary lymphoid tissues was also noted in aged groups, more evident in the mutant mice. Spatial transcriptomics of CD68(+) macrophages and CD45(-) nonimmune parenchymal cells highlighted age-dependent shifts in inflammatory and extracellular matrix organization signaling, and enrichment in senescence and chromatin remodeling pathways. These results illustrate the structural and immunological impact of O(3) in the aging wild-type and mutant lung and emphasize the significance of modeling environmental exposure in at-risk populations.NEW & NOTEWORTHY Environmental stress and genetic mutations in key functional nodes are linked to the pathogenesis and exacerbation of respiratory pathologies. These responses are exacerbated by aging, though the impact of these factors in combination is not clearly defined. Using a surfactant protein-C mutant line, our studies describe structural changes and phenotypic responses triggered by acute ozone exposure in the young/middle-aged/old lung. Spatial transcriptomics also found regionally distinct and enhanced activation in the aged lung.
Parenchymal and inflammatory responses to ozone exposure in the aging healthy and surfactant protein C mutant lung.
阅读:3
作者:Cheminant Jenna R, Deering-Rice Cassandra E, Massa Christopher B, Adhikari Ujjwal, Noll Jessica, Reilly Christopher A, Venosa Alessandro
期刊: | American Journal of Physiology-Lung Cellular and Molecular Physiology | 影响因子: | 3.500 |
时间: | 2025 | 起止号: | 2025 Mar 1; 328(3):L334-L349 |
doi: | 10.1152/ajplung.00261.2024 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。