Wound healing is an intricate process involving multiple cells and distinct phases, presenting challenges for comprehensive investigations. Currently available treatments for wounds have limited capacity to fully restore tissue and often require significant investments of time in the form of repetitive dressing changes and/or reapplications. This article presents a novel study that aims to enhance wound healing by developing biomaterial scaffolds using Medpor®, a porous polyethylene implant, as a model scaffold. The study incorporates electrospun poly(e-caprolactone) (PCL) fibers and a protein mixture (PM) containing collagen IV and laminin onto the Medpor® scaffolds. To evaluate the impact of these implants on wound healing, a unique splinted wound model in mice is employed. The wounds were evaluated for closure, inflammation, collagen deposition, angiogenesis, epithelialization, and proliferation. The results show that wounds treated with Medpor®â+âPCLâ+âPM implants demonstrate accelerated closure rates, improved epithelialization, and enhanced angiogenesis compared to other implant groups. However, there were no significant differences observed in collagen deposition and inflammatory response among the implant groups. This study provides valuable insights into the potential benefits of incorporating PCL fibers and a PM onto scaffolds to enhance wound healing. Furthermore, the developed splinted wound model with integrated implants offers a promising platform for future studies on implant efficacy and the advancement of innovative wound healing strategies.
Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model.
阅读:3
作者:Gadalla Dina, Kennedy Maeve, Ganem Jamie, Suppah Mustafa, Schmitt Alessandra, Lott David G
期刊: | Journal of Tissue Engineering and Regenerative Medicine | 影响因子: | 2.600 |
时间: | 2024 | 起止号: | 2024 Sep 4; 2024:2515383 |
doi: | 10.1155/2024/2515383 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。