Engineered 3D human neurovascular model of Alzheimer's disease to study vascular dysfunction.

构建阿尔茨海默病的三维人类神经血管模型,用于研究血管功能障碍

阅读:18
作者:Pavlou Georgios, Spitz Sarah, Pramotton Francesca Michela, Tsai Alice, Li Brent M, Wang Xun, Barr Olivia M, Ko Eunkyung Clare, Zhang Shun, Ashley Savannah J, Maaser-Hecker Anna, Choi Se Hoon, Jorfi Mehdi, Tanzi Rudolph E, Kamm Roger D
The blood-brain barrier (BBB) serves as a selective filter that prevents harmful substances from entering the healthy brain. Dysfunction of this barrier is implicated in several neurological diseases. In the context of Alzheimer's disease (AD), BBB breakdown plays a significant role in both the initiation and progression of the disease. This study introduces a three-dimensional (3D) self-assembled in vitro model of the human neurovascular unit to recapitulate some of the complex interactions between the BBB and AD pathologies. It incorporates primary human brain endothelial cells, pericytes and astrocytes, and stem cell-derived neurons and astrocytes harboring Familial AD (FAD) mutations. Over an extended co-culture period, the model demonstrates increased BBB permeability, dysregulation of key endothelial and pericyte markers, and morphological alterations mirroring AD pathologies. The model enables visualization of amyloid-beta (Aβ) accumulation in both neuronal and vascular compartments. This model may serve as a versatile tool for neuroscience research and drug development to provide insights into the dynamic relationship between vascular dysfunction and AD pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。