Indigenous gut microbes modulate neural cell state and neurodegenerative disease susceptibility.

阅读:3
作者:Blackmer-Raynolds Lisa, Sampson Maureen M, Kozlov Anna, Yang Aimee, Lipson Lyndsey, Hamilton Adam M, Kelly Sean D, Chopra Pankaj, Chang Jianjun, Sloan Steven A, Sampson Timothy R
The native microbiome influences a plethora of host processes, including neurological function. However, its impacts on diverse brain cell types remains poorly understood. Here, we performed single nucleus RNA sequencing on hippocampi from wildtype, germ-free mice and reveal the microbiome-dependent transcriptional landscape across all major neural cell types. We found conserved impacts on key adaptive immune and neurodegenerative transcriptional pathways, underscoring the microbiome's contributions to disease-relevant processes. Mono-colonization with select indigenous microbes identified species-specific effects on the transcriptional state of brain myeloid cells. Colonization by Escherichia coli induced a distinct adaptive immune and neurogenerative disease-associated cell state, suggesting increased disease susceptibility. Indeed, E. coli exposure in the 5xFAD mouse model resulted in exacerbated cognitive decline and amyloid pathology, demonstrating its sufficiency to worsen Alzheimer's disease-relevant outcomes. Together, these results emphasize the broad, species-specific, microbiome-dependent consequences on neurological transcriptional state and highlight the capacity of specific microbes to modulate disease susceptibility.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。