The native microbiome influences a plethora of host processes, including neurological function. However, its impacts on diverse brain cell types remains poorly understood. Here, we performed single nucleus RNA sequencing on hippocampi from wildtype, germ-free mice and reveal the microbiome-dependent transcriptional landscape across all major neural cell types. We found conserved impacts on key adaptive immune and neurodegenerative transcriptional pathways, underscoring the microbiome's contributions to disease-relevant processes. Mono-colonization with select indigenous microbes identified species-specific effects on the transcriptional state of brain myeloid cells. Colonization by Escherichia coli induced a distinct adaptive immune and neurogenerative disease-associated cell state, suggesting increased disease susceptibility. Indeed, E. coli exposure in the 5xFAD mouse model resulted in exacerbated cognitive decline and amyloid pathology, demonstrating its sufficiency to worsen Alzheimer's disease-relevant outcomes. Together, these results emphasize the broad, species-specific, microbiome-dependent consequences on neurological transcriptional state and highlight the capacity of specific microbes to modulate disease susceptibility.
Indigenous gut microbes modulate neural cell state and neurodegenerative disease susceptibility.
肠道固有微生物能够调节神经细胞状态和神经退行性疾病的易感性
阅读:9
作者:Blackmer-Raynolds Lisa, Sampson Maureen M, Kozlov Anna, Yang Aimee, Lipson Lyndsey, Hamilton Adam M, Kelly Sean D, Chopra Pankaj, Chang Jianjun, Sloan Steven A, Sampson Timothy R
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 22 |
| doi: | 10.1101/2025.02.17.638718 | 研究方向: | 微生物学、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
