The 3D organization of the genome has emerged as an important regulator of cellular development. Post-mitotic neurons undergo conserved changes in genome organization, such as the inward radial repositioning of heterochromatin-rich chromosomes as they differentiate. Additionally, transcriptionally active but heterochromatin-associated gene-dense (hGD) regions significantly strengthen their long-distance interactions during cerebellar development. However, the specific developmental stages during which these nuclear changes take place have remained poorly defined. Here, we report that hGD regions relocalize toward the nuclear interior and strengthen their chromosomal interactions as immature granule neurons transition from active cell migration to subsequent stages of neuronal differentiation. During this period, hGD genomic regions are coordinately repositioned in the nucleus alongside their physically tethered heterochromatic chromocenters. Despite these major changes in nuclear organization, the hGD subcompartment remains distinct from other transcriptionally active or repressive nuclear bodies, including heterochromatic chromocenters, throughout development. Notably, these nuclear changes appear to be independent of transcriptional changes that occur during granule neuron differentiation. Together, our results provide insights into the developmental timing of structural changes in the chromosomes of post-mitotic neurons.
Reorganization of the heterochromatin-associated gene-dense subcompartment in early neuronal development.
早期神经元发育过程中异染色质相关基因密集亚区室的重组
阅读:7
作者:Scrutton Alvarado Nicolas J, Zhao Ziyu, Yamada Tomoko, Yang Yue
| 期刊: | Biology Open | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 May 15; 14(5):bio062005 |
| doi: | 10.1242/bio.062005 | 研究方向: | 发育与干细胞、神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
