Estradiol and estrogen receptor α (ERα) have been shown to be important for the maintenance of skeletal muscle strength in females; however, little is known about the roles of estradiol and ERα in male muscle. The purpose of this study was to determine if skeletal muscle ERα is required for optimal contractility in male mice. We hypothesize that reduced ERα in skeletal muscle impairs contractility in male mice. Skeletal muscle-specific knockout (skmERαKO) male mice exhibited reduced strength across multiple muscles and several contractile parameters related to force generation and kinetics compared with wild-type littermates (skmERαWT). Isolated EDL muscle-specific isometric tetanic force, peak twitch force, peak concentric and peak eccentric forces, as well as the maximal rates of force development and relaxation were 11%-21% lower in skmERαKO compared with skmERαWT mice. In contrast, isolated soleus muscles from skmERαKO mice were not affected. In vivo peak torque of the anterior crural muscles was 20% lower in skmERαKO compared with skmERαWT mice. Muscle masses, contractile protein contents, fiber types, phosphorylation of the myosin regulatory light chain, and caffeine-elicited force did not differ between muscles of skmERαKO and skmERαWT mice, suggesting that strength deficits were not due to size, composition, or calcium release components of muscle contraction. These results indicate that in male mice, reduced skeletal muscle ERα blunts contractility to a magnitude similar to that previously reported in females; however, the mechanism may be sexually dimorphic.NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo contractility of leg muscles with reduced estrogen receptor α (ERα) in male mice and reported that force generation and contraction kinetics are impaired. In contrast to findings in females, phosphorylation of myosin regulatory light chain cannot account for low force production in male skeletal muscle ERα knockout mice. These results indicate that ERα is required for optimal contractility in males and females but via sexually dimorphic means.
Ablation of skeletal muscle estrogen receptor alpha impairs contractility in male mice.
阅读:3
作者:Sullivan Brian P, Collins Brittany C, McMillin Shawna L, Toussaint Elise, Stein Clara Z, Spangenburg Espen E, Lowe Dawn A
期刊: | Journal of Applied Physiology | 影响因子: | 3.300 |
时间: | 2024 | 起止号: | 2024 Apr 1; 136(4):764-773 |
doi: | 10.1152/japplphysiol.00714.2023 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。