Phosphatidylcholine cytidine transferase α (CCTα) is a key rate-limiting enzyme in the CDP-choline pathway, the primary pathway for phosphatidylcholine (PC) synthesis in mammals. This study investigated the role of CCTα in lipid droplet (LD) formation, phospholipid synthesis, LD fusion, and lipophagy in bovine mammary epithelial cells (BMECs) through CCTα gene knockout (CCT-KO) and overexpression (CCT-OE). CCTα mRNA expression was significantly increased in bovine mammary gland tissue after lactation. In BMECs, CCTα was transferred from the nucleus to the endoplasmic reticulum and localized on LD surfaces in the presence of linoleic acid. Compared with normal BMECs (NC), CCTα knockout (CCT-KO) cells had significantly greater LD diameters (1.53 μm vs. 1.68 μm, p < 0.05), lower proportions of small LDs (<1 µm; 11.39% vs. 5.42%), and higher proportions of large LDs (>3 µm; 0.67% vs. 2.88%). In contrast, CCTα overexpression (CCT-OE) decreased the diameter of LDs to 1.18 μm (p < 0.01), increased the proportion of small LDs to 35.48%, and decreased the proportion of large LDs to 0.24%. CCTα knockout significantly decreased the PC content and the ratio of PC to PE, whereas CCTα overexpression increased the PC content and the ratio of PC to phosphatidyl ethanolamine (PE) (p < 0.05). The lipidomics analysis indicated that PC synthesis was significantly influenced by CCTα gene expression. Live cell observations showed that CCTα knockout promoted the fusion of small LDs into large LDs. In cells with CCT α overexpression, the expression of the microtubule-associated protein 1 light chain 3 (LC3) protein and the number of lysosomes was elevated, and the lysosomal phagocytosis of LDs was observed through transmission electron microscopy, thus indicating that CCTα overexpression enhanced lipophagy. In conclusion, these results suggest that CCTα plays a role in regulating LD formation by influencing PC synthesis, LD fusion, and lipophagy in BMECs.
Phosphatidylcholine Cytidine Transferase α (CCTα) Affects LD Formation Through Fusion and Lipophagy in Bovine Mammary Epithelial Cells.
磷脂酰胆碱胞苷转移酶α(CCTα)通过融合和脂质自噬影响牛乳腺上皮细胞中的脂滴形成
阅读:9
作者:Yang Jingna, Fan Yuxin, Kang Fangyuan, Yang Yanbin, Wang Yueying, Liu Yang, Han Liqiang
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 27; 26(5):2135 |
| doi: | 10.3390/ijms26052135 | 种属: | Bovine |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
