Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning.

阅读:4
作者:Hojo Miki Arai, Tsuzuki Taku, Ozawa Yosuke, Araki Toshiyuki, Sakurai Hidetoshi
The reproducibility and robustness of many directed differentiation protocols from human induced pluripotent stem cells (hiPSCs) remain low, and the long differentiation induction period significantly limits protocol optimization. To address this, we developed an early and non-destructive prediction system for the differentiation induction efficiency of hiPSCs using bioimage informatics. We employed a directed differentiation protocol for muscle stem cells (MuSCs), a promising cell source for the regenerative therapy of muscular dystrophy. Biological analyses suggested that days 14-38 are positive for forecasting the induction efficiency on day 82. Therefore, we conducted six independent experiments, inducing MuSC differentiation in a total of 34 wells, and captured a total of 5,712 phase contrast cell images between days 14 and 38. We selected Fast Fourier transform (FFT) as the feature extraction method and confirmed that it captures the characteristics of cells during differentiation. By classifying images on each day using extracted features and machine learning, we found that samples with high and low induction efficiency could be predicted at approximately 50 days before the end of induction. This system is expected to contribute to regenerative therapy through effective protocol optimization.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。