Mechanisms of axoneme and centriole elimination in Naegleria gruberi.

阅读:2
作者:Woglar Alexander, Busso Coralie, Garcia-Rodriguez Gabriela, Douma Friso, Croisier Marie, Knott Graham, Gönczy Pierre
The early branching eukaryote Naegleria gruberi can transform transiently from an amoeboid life form lacking centrioles and flagella to a flagellate life form where these elements are present, followed by reversion to the amoeboid state. The mechanisms imparting elimination of axonemes and centrioles during this reversion process are not known. Here, we uncover that flagella primarily fold onto the cell surface and fuse within milliseconds with the plasma membrane. Once internalized, axonemes are severed by Spastin into similarly-sized fragments that are then enclosed by membranes, before their contents are eliminated through the lysosomal pathway. Moreover, we discovered that centrioles undergo progressive K63 autophagy-linked poly-ubiquitination and K48 proteasome-promoting poly-ubiquitination, and that such ubiquitination occurs next to centriolar microtubules. Most centrioles are eliminated in either lysosomes or the cytoplasm in a lysosomal- and proteasome-dependent manner. Strikingly, we uncover in addition that centrioles can be shed in the extracellular milieu and taken up by other cells. Collectively, these findings reveal fundamental mechanisms governing the elimination of essential cellular constituents in Naegleria that may operate broadly in eukaryotic systems.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。