Cancer metabolism is a hallmark of cancer. However, the impact of systemic metabolism and diet on tumour evolution is less understood. This study delves into the role of glucagon, as a component of the pancreatic microenvironment, in regulating features of pancreatic neuroendocrine tumour (pNET) cells and the metabolic remodelling occurring in the presence and absence of glucose. pNET cell lines (BON-1 and QGP-1) and the non-malignant pancreatic α-TC1 cell line were used as models. Results showed that pNET cells responded differently to glucose deprivation than α-TC1 cells. Specifically, pNET cells upregulated the GCGR in the absence of glucose, while α-TC1 cells did so in high-glucose conditions, allowing the glucagon-related pERK1/2 activation under these conditions in pNET cells. Glucagon enhanced cancerous features in pNET BON-1 cells under glucose-deprived and hyperglucagonemia-compatible concentrations. In the α-TC1 cell line, glucagon modulated cell features under high-glucose and physiological glucagon levels. NMR exometabolome analysis revealed differences in metabolic processes based on glucose availability and glucagon stimulation across cell lines, highlighting amino acid metabolism, glycolysis, and gluconeogenesis. The expression of metabolic genes was consistent with these findings. Interestingly, QGP-1 and α-TC1 cells produced glucose in no-glucose conditions, and glucagon upregulated glucose production in α-TC1 cells. This suggests that gluconeogenesis may be beneficial for some pNET subsets, pointing out novel metabolism-based strategies to manage pNETs, as well as a step forward in endocrinology and systemic metabolism. The association between GCGR expression and malignancy and a negative correlation between glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) expression was observed, indicating a biological role of glucagon in pNETs that deserves to be explored.
Glucagon and Glucose Availability Influence Metabolic Heterogeneity and Malignancy in Pancreatic Neuroendocrine Tumour (pNET) Cells: Novel Routes for Therapeutic Targeting.
阅读:11
作者:Ferreira Bárbara, Lemos Isabel, Mendes Cindy, Chumbinho Beatriz, Silva Fernanda, Pereira Daniela, Vigia Emanuel, Gonçalves LuÃs G, Figueiredo António, Cavaco Daniela, Serpa Jacinta
期刊: | Molecules | 影响因子: | 4.600 |
时间: | 2025 | 起止号: | 2025 Jun 25; 30(13):2736 |
doi: | 10.3390/molecules30132736 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。