Dietary Intake of Octanoic Acid Restores UBE3A Expression and Improves the Behavioral Phenotypes in a Mouse Model of Angelman Syndrome.

辛酸的膳食摄入可恢复 UBE3A 表达,并改善 Angelman 综合征小鼠模型的行为表型

阅读:7
作者:Qu Song, Guan Xingying, Li Hongyan, Yang Jian, Sun Pu, Song Cui, Surzenko Natalia, Wang Yanyan
Angelman syndrome (AS) is a severe neurodevelopmental disorder with no effective therapies. Most of the behavioral deficits observed in AS patients arise from the absence of ubiquitin protein ligase E3A (UBE3A) in the brain during development, driven by the loss of maternally expressed UBE3A and silencing of the paternal copy of this gene through imprinting. Safe and effective therapies aiming at restoring the expression of the paternal UBE3A gene early in human life are currently lacking. In this study, we investigated whether octanoic acid (OA), a medium-chain fatty acid, could unsilence the paternal Ube3a allele in neurons and ameliorate the behavioral defects in a murine model of AS. To this end, Ube3a(m-/p+) and Ube3a(m+/pYFP) mice, as well as their wild-type littermates, were fed either a control or OA-supplemented diet from postnatal day 0 through adulthood, and the improvements in AS-related cellular and behavioral deficits were characterized. We demonstrate that dietary intake of OA activates the expression of the silenced, paternal Ube3a in neurons and improves select AS behavioral phenotypes in mice. We further show that downregulation of topoisomerase II beta and restoration of dendritic spine development may underlie the unsilencing of Ube3a and the behavioral improvements in OA-supplemented animals, respectively. Together, our findings suggest that dietary supplementation with OA could serve as an early, safe, and clinically feasible therapeutic strategy for reactivation of the paternal UBE3A allele in patients with AS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。