Vocalizations are often elaborate, rhythmically structured behaviors. Vocal motor patterns require close coordination of neural circuits governing the muscles of the larynx, jaw, and respiratory system. In the elaborate vocalization of Alston's singing mouse (Scotinomys teguina) each note of its rapid, frequency-modulated trill is accompanied by equally rapid modulation of breath and gape. To elucidate the neural circuitry underlying this behavior, we introduced the polysynaptic retrograde neuronal tracer pseudorabies virus (PRV) into the cricothyroid and digastricus muscles, which control frequency modulation and jaw opening, respectively. Each virus singly labels ipsilateral motoneurons (nucleus ambiguus for cricothyroid, and motor trigeminal nucleus for digastricus). We find that the two isogenic viruses heavily and bilaterally colabel neurons in the gigantocellular reticular formation, a putative central pattern generator. The viruses also show strong colabeling in compartments of the midbrain including the ventrolateral periaqueductal gray and the parabrachial nucleus, two structures strongly implicated in vocalizations. In the forebrain, regions important to social cognition and energy balance both exhibit extensive colabeling. This includes the paraventricular and arcuate nuclei of the hypothalamus, the lateral hypothalamus, preoptic area, extended amygdala, central amygdala, and the bed nucleus of the stria terminalis. Finally, we find doubly labeled neurons in M1 motor cortex previously described as laryngeal, as well as in the prelimbic cortex, which indicate these cortical regions play a role in vocal production. The progress of both viruses is broadly consistent with vertebrate-general patterns of vocal circuitry, as well as with circuit models derived from primate literature.
Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus.
利用伪狂犬病毒绘制阿尔斯顿鸣鼠的发声回路图
阅读:9
作者:Zheng Da-Jiang, Okobi Daniel E Jr, Shu Ryan, Agrawal Rania, Smith Samantha K, Long Michael A, Phelps Steven M
| 期刊: | Journal of Comparative Neurology | 影响因子: | 2.100 |
| 时间: | 2022 | 起止号: | 2022 Aug;530(12):2075-2099 |
| doi: | 10.1002/cne.25321 | 种属: | Mouse |
| 研究方向: | 炎症/感染 | 疾病类型: | 狂犬病 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
