A dual role for pleiotrophin in modulating inflammation and myelination in the presence of chondroitin sulfate proteoglycans after nervous system injury.

在神经系统损伤后,软骨素硫酸蛋白聚糖存在的情况下,多效蛋白在调节炎症和髓鞘形成中发挥双重作用

阅读:7
作者:Gupta Somnath J, Churchward Matthew A, Todd Kathryn G, Winship Ian R
Chondroitin sulfate proteoglycans (CSPGs), key components of the extracellular matrix and the glial scar that forms around central nervous system (CNS) injuries, are recognized for hindering neuronal regeneration. We previously demonstrated the potential of pleiotrophin (PTN) to induce neurite outgrowth even in the presence of inhibitory CSPGs. The effects of PTN on microglia and oligodendrocytes are not well described. Here, we examined how PTN administration alters the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in the presence of CSPGs using in vitro cell culture model. Moreover, we explored the effects of PTN on the inflammatory activity of microglia with and without inflammatory stimulation (IFN-γ) in a CSPG-rich environment. The data showed that the CSPG matrix inhibited the differentiation of OPCs into mature oligodendrocytes. PTN induced dose-dependent differentiation of OPCs into mature oligodendrocytes, with an optimal effect at 10 nM PTN. Moreover, PTN modified the immunological response of microglia in the presence of CSPGs, with reduced proinflammatory activity that was further reduced by PTN administration, in contrast to the increased release of matrix metalloproteinases (MMP 9). However, when IFN-γ-activated microglia were treated with PTN, proinflammatory signaling was stimulated at higher PTN concentrations (10 nM and 100 nM). Overall, our results indicate that PTN can overcome the inhibitory effect of CSPGs on the differentiation of OPCs into oligodendrocytes and can modulate inflammation mediated by CSPGs from microglia. Collectively, these findings demonstrate that PTN can effectively counteract the inhibitory effects of CSPGs on the differentiation of OPCs into mature oligodendrocytes while also modulating microglial responses to reduce proinflammatory activity and increase MMP-9 release. Thus, PTN has great potential to improve remyelination and neuroprotective strategies in the treatment of demyelinating diseases or any injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。