Collective cell migration is critical to embryonic development, wound healing, and the immune response, but also drives tumor dissemination. Understanding how cell collectives coordinate migration in vivo has been a challenge, with potential therapeutic benefits that range from addressing developmental defects to designing targeted cancer treatments. The small GTPase Rap1 has emerged as a regulator of both embryogenesis and cancer cell migration. How active Rap1 coordinates downstream signaling functions required for coordinated collective migration is poorly understood. Drosophila border cells undergo a stereotyped and genetically tractable in vivo migration within the developing egg chamber of the ovary. This group of 6-8 cells migrates through a densely packed tissue microenvironment and serves as an excellent model for collective cell migration during development and disease. Rap1, like all small GTPases, has distinct activity state switches that link extracellular signals to organized cell behaviors. Proper regulation of Rap1 activity is essential for successful border cell migration yet the signaling partners and other downstream effectors are poorly characterized. Using the known requirement for Rap1 in border cell migration, we conducted a dominant suppressor screen for genes whose heterozygous loss modifies the migration defects observed upon constitutively active Rap1V12 expression. Here, we identified 7 genomic regions on the X chromosome that interact with Rap1V12. We mapped three genomic regions to single Rap1-interacting genes, frizzled 4, Ubiquitin-specific protease 16/45, and strawberry notch. Thus, this unbiased screening approach identified multiple new candidate regulators of Rap1 activity with roles in collective border cell migration.
A deficiency screen of the X chromosome for Rap1 GTPase dominant interacting genes in Drosophila border cell migration.
阅读:3
作者:Messer C Luke, Burghardt Emily, McDonald Jocelyn A
期刊: | G3-Genes Genomes Genetics | 影响因子: | 2.200 |
时间: | 2025 | 起止号: | 2025 May 8; 15(5):jkaf040 |
doi: | 10.1093/g3journal/jkaf040 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。