SMAD1/5-mediated recruitment of the histone demethylase KDM1A controls cell fate programs in embryonic stem cells.

SMAD1/5 介导的组蛋白去甲基化酶 KDM1A 的募集控制胚胎干细胞的细胞命运程序

阅读:9
作者:Morikawa Masato, Koinuma Daizo, Sakai Hiroaki, Kanda Yusuke, Yuki Keiko, Okamoto Koji, Miyazono Kohei
Bone morphogenetic proteins (BMPs) play diverse roles in mouse embryonic stem cell (mESC) biology. Recent studies suggest that BMPs induce multiple cell fates and enhance mESC heterogeneity by cross-activating multiple signaling pathways. Although BMPs primarily signal through SMAD1 and SMAD5 in mESCs, their roles remain incompletely defined. Here, we investigated the SMAD signaling pathway using Smad1/5 double knockout (S1/5 dKO) mESCs. While SMAD1/5 depletion may influence mESC heterogeneity, single-cell RNA sequencing (scRNA-seq) revealed only minor differences between S1/5 dKO and WT cells, suggesting that the observed changes are not because of altered cell states. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrated that SMAD1/5 recruit the histone demethylase KDM1A/LSD1 to specific genomic regions, where it removes H3K4me1/2 marks associated with enhancers. Published scRNA-seq data from Kdm1a-deficient mESCs during embryoid body differentiation further supported this mechanism. This study reveals a transcriptional repression mechanism of SMAD1/5, involving KDM1A-dependent H3K4me1/2 depletion and the regulation of cell type-specific gene expression programs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。