Efficient Fabrication of Human Corneal Stromal Cell Spheroids and Promoting Cell Stemness Based on 3D-Printed Derived PDMS Microwell Platform.

阅读:2
作者:Chen Yuexi, Gu Jianing, Cui Zekai, Sun Xihao, Liang Yuqin, Duan Chunwen, Li Xiaoxue, Su Zhanyu, Zhang Bo, Chen Jiansu, Wang Zheng
Spherical culture could promote the plasticity and stemness of human corneal stromal cells (hCSCs). Here, we introduce a novel three-dimensional (3D) cell culture system based on a polydimethylsiloxane (PDMS) microwell platform composed of many V-bottom microcavities to generate human corneal stromal cell spheroids and promote cell stemness. We isolated hCSCs from SMILE-derived lenticules and maintained their physiological phenotype by culturing them in a medium supplemented with human corneal stromal extract (hCSE). Utilizing a PDMS microwell platform fabricated through 3D printing technology, we successfully generated 3D corneal stromal cell spheroids (3D-CSC) with uniform size and stable structure, exhibiting increased expression of pluripotency factors, including OCT4, NANOG, SOX2, KLF4, and PAX6. Furthermore, the iPS supernatant of E8-conditioned medium (E8-CM) significantly enhanced the stemness properties of these cells. RNA sequencing and proteomics analyses revealed that 3D-CSCs exhibited superior proliferation, differentiation, cell adhesion, migration, and neurogenesis compared to traditional monolayer cultures, underscoring the role of biophysical cues in promoting hCSCs stemness. In summary, this study presents an effective 3D cell culture platform that mimics the in vivo microenvironment, facilitating the enhancement of stemness properties and providing valuable insights into corneal tissue engineering and regenerative medicine, particularly for treating corneal opacities and diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。