OBJECTIVE: This study explores how extracellular vesicles (EVs) derived from keratinocytes cultured in Gelatin Methacryloyl (GelMA) hydrogels facilitate microvascular regeneration and enhance wound repair in diabetic skin ulcers. METHODS: EVs were harvested from keratinocyte cultures via ultracentrifugation and ultrafiltration, followed by characterization. Their uptake and angiogenic effects on human umbilical vein endothelial cells (HUVECs) were assessed in the following experimentations. Transcriptomic profiling of EV-treated HUVECs identified angiogenesis-related gene expression changes. A diabetic murine wound model was established and validated via glycemic profiling and pancreatic histology. In vivo effects of GelMA-EVs were evaluated through wound closure rates, histology (re-epithelialization, vascularization, collagen deposition), CD31 staining, and microvascular imaging. RESULTS: Keratinocyte-derived EVs significantly enhanced HUVEC proliferation, migration, and tube formation. Mechanistic studies reported elevated PDGF expression, activating the PI3K/AKT pathway. In vivo experiments validated that GelMA hydrogel-loaded EVs increased PDGF expression in wound tissues, promoting microvascular reconstruction and accelerating wound healing in diabetic mouse skin ulcers. CONCLUSION: GelMA hydrogel-loaded EVs derived from keratinocytes upregulate PDGF, activating the PI3K/AKT pathway to promote microvascular network reconstruction and enhance wound healing in diabetic mouse skin ulcers.
GelMA hydrogel-loaded extracellular vesicles derived from keratinocytes promote skin microvasculature regeneration and wound healing in diabetic mice through activation of the PDGF-induced PI3K/AKT pathway.
载有源自角质形成细胞的 GelMA 水凝胶的细胞外囊泡通过激活 PDGF 诱导的 PI3K/AKT 通路促进糖尿病小鼠皮肤微血管再生和伤口愈合
阅读:11
作者:Li Qian, Zhou Leilei, Li Wenqiang, Zhao Weiheng, Chen Weimin, AlQranei Mohammed S, Bi Jiarui, Huang Ping
| 期刊: | Cell Biology and Toxicology | 影响因子: | 5.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 14; 41(1):103 |
| doi: | 10.1007/s10565-025-10062-2 | 研究方向: | 细胞生物学 |
| 疾病类型: | 糖尿病 | 信号通路: | PI3K/Akt |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
