Development and validation of machine learning models with blood-based digital biomarkers for Alzheimer's disease diagnosis: a multicohort diagnostic study.

利用基于血液的数字生物标志物开发和验证机器学习模型以诊断阿尔茨海默病:一项多队列诊断研究

阅读:15
作者:Jiao Bin, Ouyang Ziyu, Xiao Xuewen, Zhang Cong, Xu Tianyan, Yang Qijie, Zhu Yuan, Liu Yiliang, Liu Xixi, Zhou Yafang, Liao Xinxin, Luo Shilin, Tang Beisha, Li Zhigang, Shen Lu
BACKGROUND: Alzheimer's disease (AD) involves complex alterations in biological pathways, making comprehensive blood biomarkers crucial for accurate and earlier diagnosis. However, the cost-effectiveness and operational complexity of method using blood-based biomarkers significantly limit its availability in clinical practice. METHODS: We developed low-cost, convenient machine learning-based with digital biomarkers (MLDB) using plasma spectra data to detect AD or mild cognitive impairment (MCI) from healthy controls (HCs) and discriminate AD from different types of neurodegenerative diseases. Retrospective data were gathered for 1324 individuals, including 293 with amyloid beta positive AD, 151 with mild cognitive impairment (MCI), 106 with Lewy body dementia (DLB), 106 with frontotemporal dementia (FTD), 135 with progressive supranuclear palsy (PSP) and 533 healthy controls (HCs) between July 2017 and August 2023. FINDINGS: Random forest classifier and feature selection procedures were used to select digital biomarkers. MLDB achieved area under the curves (AUCs) of 0.92 (AD vs. HC, Sensitivity 88.2%, specificity 84.1%), 0.89 (MCI vs. HC, Sensitivity 88.8%, specificity 86.4%), 0.83 (AD vs. DLB, Sensitivity 77.2%, specificity 74.6%), 0.80 (AD vs. FTD, sensitivity 74.2%, specificity 72.4%), and 0.93 (AD vs. PSP, sensitivity 76.1%, specificity 75.7%). Digital biomarkers distinguishing AD from HC were negatively correlated with plasma p-tau217 (r = -0.22, p < 0.05) and glial fibrillary acidic protein (GFAP) (r = -0.09, p < 0.05). INTERPRETATION: The ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) plasma spectra features can identify AD-related pathological changes. These spectral features serve as digital biomarkers, providing valuable support in the early screening and diagnosis of AD. FUNDING: The National Natural Science Foundation of China, STI2030-Major Projects, National Key R&D Program of China, Outstanding Youth Fund of Hunan Provincial Natural Science Foundation, Hunan Health Commission Grant, Science and Technology Major Project of Hunan Province, Hunan Innovative Province Construction Project, Grant of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital and Postdoctoral Fellowship Program of CPSF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。