Hypoxic-ischemic brain injury (HIBD) is a major cause of neonatal mortality and long-term neurological deficits, with limited treatment options. Extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells (hUC-MSC-EVs) have shown promise in neuroprotection, but the mechanisms remain unclear. This study explores how hUC-MSC-EVs protect neonatal rats from HIBD. hUC-MSC-EVs were isolated, characterized, and administered to neonatal rats subjected to HIBD. Behavioral reflexes and brain infarction were assessed, along with cellular and molecular analyses of hippocampal tissue. An in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was used to simulate ischemic conditions in rat primary microglia. Results demonstrated that hUC-MSC-EVs significantly improved neurological outcomes, reduced brain infarction, and decreased microglial activation and pyroptosis. These effects were linked to the inhibition of NLRP3 inflammasome activation and enhanced ubiquitination via the protein kinase A (PKA) pathway. Blocking PKA partially reversed these protective effects. Here we highlight that hUC-MSC-EVs provide neuroprotection by regulating the NLRP3 inflammasome, offering a potential therapeutic strategy for HIBD. These findings expand the understanding of EV-mediated neuroprotection and suggest broader applications for ischemia-related conditions, with potential for clinical translation.
hUC-MSC extracellular vesicles protect against hypoxic-ischemic brain injury by promoting NLRP3 ubiquitination.
hUC-MSC 细胞外囊泡通过促进 NLRP3 泛素化来保护大脑免受缺氧缺血性损伤
阅读:14
作者:Xiao Shanshan, Lv Ying, Hou Xuejing, Qu Shuqiang
| 期刊: | Biomolecules Biomedicine | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 May 8; 25(7):1553-1570 |
| doi: | 10.17305/bb.2024.10706 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
