Corticotropin-Releasing Factor Release From a Unique Subpopulation of Accumbal Neurons Constrains Action-Outcome Acquisition in Reward Learning.

伏隔核神经元独特亚群释放促肾上腺皮质激素释放因子限制了奖励学习中行为结果的习得

阅读:9
作者:Eckenwiler Elizabeth A, Ingebretson Anna E, Stolley Jeffrey J, Fusaro Maxine A, Romportl Alyssa M, Ross Jack M, Petersen Christopher L, Kale Eera M, Clark Michael S, Schattauer Selena S, Zweifel Larry S, Lemos Julia C
BACKGROUND: The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin-releasing factor (CRF) has been previously documented. Here, we provide a comprehensive analysis of their identity and functional role in shaping reward learning. METHODS: Our multidisciplinary approach included fluorescent in situ hybridization (n = ≥3 mice), tract tracing (n = 5 mice), ex vivo electrophysiology (n = ≥30 cells), in vivo calcium imaging with fiber photometry (n = ≥4 mice), and use of viral strategies in transgenic lines to selectively delete CRF peptide from NAc neurons (n = ≥4 mice). Behaviors used were instrumental learning, sucrose preference, and spontaneous exploration in an open field. RESULTS: We showed that the vast majority of NAc CRF-containing neurons are spiny projection neurons (SPNs) comprising dopamine D(1)-, D(2)-, or D(1)/D(2)-containing SPNs that primarily project and connect to the ventral pallidum and to a lesser extent the ventral midbrain. As a population, they display mature and immature SPN firing properties. We demonstrated that NAc CRF-containing neurons track reward outcomes during operant reward learning and that CRF release from these neurons acts to constrain initial acquisition of action-outcome learning and at the same time facilitates flexibility in the face of changing contingencies. CONCLUSIONS: CRF release from this sparse population of SPNs is critical for reward learning under normal conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。