One of the most prominent causes of alopecia areata (AA) is chronic inflammation of the hair follicles. Inhibiting cellular pyroptosis, a form of inflammatory programmed cell death, is crucial for reducing follicular inflammation in the skin. Total glucosides of paeony (TGP) possess anti-inflammatory properties across a broad range of illnesses. However, the role of TGP in AA and its relationship to pyroptosis remain unclear. A chronic unpredictable mild stress (CUMS) approach was used to create an AA mouse model. TGP suspension and MCC950 were administered to AA mice via gavage. HE staining, ELISA, immunohistochemistry, immunofluorescence, RT-qPCR, and Western blotting were performed to detect pathological changes in the skin and investigate the levels of inflammatory factors and pyroptosis-related proteins, as well as the potential mechanisms of TGP's effects. TGP reduced hair loss, increased the number of hair follicles in skin tissues, and decreased inflammatory markers (IL-6, TNF-α, IL-18, and IL-1β) in AA mice. MCC950 significantly reduced the levels of NLRP3/caspase-1/Gasdermin D (GSDMD)-mediated pyroptosis-related proteins (NLRP3, ASC, caspase-1 p10, and GSDMD-N), as well as inflammatory factors. TGP markedly inhibited NLRP3/caspase-1/GSDMD-mediated cellular pyroptosis in a concentration-dependent manner. TGP suppresses the NLRP3/caspase-1/GSDMD signaling cascade in the skin tissues of AA mice, thereby reducing cellular pyroptosis and inflammation. TGP may be a potential therapeutic agent for AA.
Total glucosides of paeony inhibit NLRP3/caspase-1/GSDMD-mediated inflammation and pyroptosis in C3H/HeJ mice with alopecia areata.
芍药总糖苷抑制 C3H/HeJ 斑秃小鼠中 NLRP3/caspase-1/GSDMD 介导的炎症和细胞焦亡
阅读:7
作者:Zhang Jingfang, Li Zhiquan, Liu Kunpeng, Du Xueyuan, Yao Tao, Ye Jianzhou
| 期刊: | Biomolecules Biomedicine | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 7; 25(4):954-964 |
| doi: | 10.17305/bb.2024.10907 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
