Mitochondrial gene expression regulation is required for the biogenesis of oxidative phosphorylation (OXPHOS) complexes, yet the spatial organization of mitochondrial RNAs (mt-RNAs) remains unknown. Here, we investigated the spatial distribution of mt-RNAs during various cellular stresses using single-molecule RNA-FISH. We discovered that transcription inhibition leads to the formation of distinct RNA granules within mitochondria, which we term inhibition granules. These structures differ from canonical mitochondrial RNA granules and form in response to multiple transcription arrest conditions, including ethidium bromide treatment, specific inhibition or stalling of the mitochondrial RNA polymerase, and depletion of the SUV3 helicase. Inhibition granules appear to stabilize certain mt-mRNAs during prolonged transcription inhibition. This phenomenon coincides with an imbalance in OXPHOS complex expression, where mitochondrial-encoded transcripts decrease while nuclear-encoded subunits remain stable. We found that cells recover from transcription inhibition via resolving the granules, restarting transcription, and repopulating the mitochondrial network with mt-mRNAs within hours. We suggest that inhibition granules may act as a reservoir to help overcome OXPHOS imbalance during recovery from transcription arrest.
Transcription arrest induces formation of RNA granules in mitochondria.
阅读:3
作者:Hansen Katja G, Baxter-Koenigs Autum, Weiss Caroline Am, McShane Erik, Churchman L Stirling
期刊: | Life Science Alliance | 影响因子: | 2.900 |
时间: | 2025 | 起止号: | 2025 Jun 16; 8(9):e202403082 |
doi: | 10.26508/lsa.202403082 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。