A magneto-responsive nanomesh biosensor for simultaneous mechanical stimulation and electrochemical detection.

阅读:2
作者:Jin Kai-Qi, Sun Tian-Cai, Zhou Zi-Xing, Li Jing-Du, Zhao Yi, Fan Wen-Ting, Yan Jing, Huang Guo-You, Huang Wei-Hua, Liu Yan-Ling
Mechanical cues are critical regulators of cell fate and behavior through the orchestrated and continual conversion of physical forces into biochemical responses. However, due to the poor compatibility between mechanical and biochemical techniques, existing methods are often limited in characterizing the occurring biochemical signals during mechanical stimulation. Herein, this work presents a magneto-responsive nanomesh (MRnM) biosensor capable of mechanically stimulating cells in vitro and tissues in vivo and simultaneously detecting the triggered biomolecules. Under external magnetic fields, the sensor exhibits excellent magnetic responsiveness with remote, controllable and tailored deformation, while maintaining prominent and stable electrochemical sensing performance. As a proof of concept, this MRnM sensor achieves the magnetically-actuated deformation of osteoblasts and real-time monitoring of the ensuing nitric oxide release, revealing the role of Piezo1 channels in nitric oxide synthase signaling pathways. Furthermore, we demonstrate the capability of MRnM sensor for in vivo applications. Ultimately, the developed MRnM biosensor holds great potential for mechanical stimulation and real-time monitoring of various biological systems, ranging from living cells to soft tissues and in vivo organs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。