Diabetic nephropathy (DN), characterized by the chronic loss of kidney function during diabetes, is a long-term kidney disease that affects millions of populations. However, the etiology of DN remains unclear. DN cell model was established by treating HK-2 cells with high glucose (HG) in vitro. Expression of metastasis-associated lung adenocarcinoma transcript-1 (MALAT1), miR-30c, nucleotide binding and oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, IL-1β, and IL-18 in treated HK-2 cells were tested by quantitative polymerase chain reaction. HK-2 cell pyroptosis was assessed using flow cytometry analysis. Lactate dehydrogenase (LDH) activity was examined with a LDH assay kit. Correlation among MALAT1, miR-30c, and NLRP3 was examined via dual-luciferase reporter assay. Here, we revealed that MALAT1 was upregulated, but miR-30c was downregulated in HG-treated HK-2 cells, leading to upregulation of NLRP3 expression and cell pyroptosis. Knockdown of MALAT1 or overexpression of miR-30c protected HK-2 cells from HG-induced pyroptosis. Meanwhile, we found that MALAT1 promoted NLRP3 expression by sponging miR-30c through dual-luciferase reporter assay. Moreover, the co-transfection of sh-MALAT1 and miR-30c inhibitor could reverse the protective effects of the sh-MALAT1 on the HG-induced pyroptosis. These results confirmed that MALAT1 regulated HK-2 cell pyroptosis by inhibiting miR-30c targeting for NLRP3, contributing to a better understanding of DN pathogenesis and help to find out the effective treatment for DN.
LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3.
LncRNA MALAT1 通过海绵吸附 miR-30c 靶向 NLRP3,促进高葡萄糖诱导的肾小管上皮细胞焦亡
阅读:5
作者:Liu Chan, Zhuo Hui, Ye Mu-Yao, Huang Gu-Xiang, Fan Min, Huang Xian-Zhe
| 期刊: | Kaohsiung Journal of Medical Sciences | 影响因子: | 3.100 |
| 时间: | 2020 | 起止号: | 2020 Sep;36(9):682-691 |
| doi: | 10.1002/kjm2.12226 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
