Chemotherapy is the leading treatment for acute lymphoblastic leukemia (ALL). However, many ALL patients eventually develop relapses, the treatment of which remains a major challenge due to their chemoresistance phenotype. As a step towards this end, we here uncovered that relapsed ALL specimens exhibit a significantly lower expression of STAT6 but not of other STATs, when compared with their paired diagnosis specimens. Furthermore, STAT6 plays a distinctive role in chemosensitization of ALL cells to cytarabine (Ara-C), and T-box transcription factor 21 (TBX21) emerged as a plausible intrinsic biomarker of this Ara-C chemosensitization. We demonstrate that STAT6 undergoes SUMOylation on Lys-307 and sentrin/SUMO-specific protease 3 (SENP3)-mediated deSUMOylation in ALL cells. Most importantly, Ara-C specifically induced SENP3 expression and SENP3 knockdown sensitized ALL cells to Ara-C, with an impact equivalent to STAT6 knockout. These findings support the feedback resistance conferred upon ALL cells by Ara-C-induced SENP3 expression. Our findings uncover a novel role for STAT6 in ALL resistance to Ara-C and suggest that its targeted deprivation or pharmacological inhibition specifically sensitizes ALL cells to Ara-C, offering a plausible modality to surmount Ara-C resistance in future ALL treatment.
Targeted deprivation of STAT6 sensitizes acute lymphoblastic leukemia cells to cytarabine in vivo and in vitro: clinical implications.
阅读:2
作者:Sun Shuzhang, Cheng Yixuan, Huang Xiange, Yan Yinjie, Hou Wanxin, Fang Houshun, Chen Yao, Ma Chunshuang, Lu Yiming, Zhou Zhiyi, Assaraf Yehuda G, Li Hui, Li Hegen, Xiao Ning
期刊: | Cell Death & Disease | 影响因子: | 9.600 |
时间: | 2025 | 起止号: | 2025 Sep 2; 16(1):669 |
doi: | 10.1038/s41419-025-07981-7 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。