Oxidative damage induced by glutamate triggers neuronal death in cerebral ischemic/reperfusion injury. BTB and CNC homology 1 (BACH1) is a major link between the cellular heme level, the redox state and the transcriptional response. p-Coumaric acid (p-CA) is a natural antioxidant that has been shown to ameliorate ischemic/reperfusion injury. In this study, we investigated whether and how p-CA regulated BACH1 in ischemic/reperfusion injury from the perspective of BACH1 subcellular localization and function. Middle cerebral artery occlusion (MCAO) model was established in male mice. MCAO mice were treated with p-CA (50, 100âmg/kg, ip) twice 5âmin after MCAO and 5âh after reperfusion operation, respectively. We showed that p-CA treatment exerted dramatic neuroprotective effects, which were associated with the inhibition of BACH1. In HT22 cells, treatment with p-CA (20 μM) ameliorated OGD/R or glutamate-induced oxidative damage and mitochondrial dysfunction through decreasing the protein level of BACH1, the beneficial effect of p-CA was blocked by BACH1 overexpression. We demonstrated that BACH1 level was markedly elevated in the nucleus of HT22 cells under glutamate stimulation, and transcriptionally regulated NADPH oxidase 4 (NOX4) expression, thus mediating ROS outbreak. p-CA treatment activated the activated Cdc42-associated kinase 1 (ACK1)/protein kinase B (AKT) cascade to facilitate the phosphorylation of BACH1, augmented its interaction with chromosome region maintenance 1 (CRM1), thereby leading to the export of BACH1 from the nucleus and degradation mediated by heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1). In accord with this, administration of ACK1 inhibitor AIM-100 (20âmg/kg, ip) 5âmin after MCAO significantly attenuated the neuroprotective effects of p-CA in MCAO mice. We concluded that ACK1/AKT/BACH1 axis may serve as a promising therapeutic approach for the management of ischemic stroke, thereby broadening the clinical utility of p-CA.Keywords: ischemic/reperfusion injury; p-Coumaric acid; BACH1; NOX4; ACK1/AKT; AIM-100.
p-Coumaric acid alleviates neuronal damage in ischemic stroke mice by promoting BACH1 nuclear export and degradation.
阅读:2
作者:Song Meng-Lu, Sun Yun-Yun, Yin Hai-Jun, Li Yi, Yang Hua
期刊: | Acta Pharmacologica Sinica | 影响因子: | 8.400 |
时间: | 2025 | 起止号: | 2025 Aug;46(8):2136-2150 |
doi: | 10.1038/s41401-025-01510-0 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。