Rebastinib inhibits FoxO1 activity and reduces dexamethasone-induced atrophy and its-related gene expression in cultured myotubes.

瑞巴替尼抑制 FoxO1 活性,减少地塞米松诱导的肌管萎缩及其相关基因表达

阅读:17
作者:Sato Tomoki, Morita Akihito, Watanabe Yui, Naito Yumi, Kawaji Haruka, Nakagawa Takumi, Hamaguchi Hiroki, Manabe Yasuko, Fujii Nobuharu L, Ogo Naohisa, Asai Akira, Kamei Yasutomi, Miura Shinji
FoxO1, a transcription factor, is upregulated in skeletal muscle during atrophy and inactivation of FoxO1 is a potential strategy to prevent muscle loss. This study identified Rebastinib as a potent suppressor of FoxO1 activity among protein kinase inhibitors. To determine whether Rebastinib inhibits atrophy-related ubiquitin ligases gene expression and mitigates atrophy in mouse skeletal muscle-derived cells, we investigated its protective effects of the compound against dexamethasone (DEX)-induced muscle atrophy using C2C12 myotubes. Rebastinib inhibited the DEX-induced upregulation of atrogin-1 and MuRF-1 mRNA, and atrogin-1 protein. Rebastinib also suppressed protein degradation and increased myotube diameter in DEX-treated C2C12 myotubes. Additionally, Rebastinib ameliorated the DEX- and cachexia-induced reduction in contractile force generation. Although the precise mechanisms underlying the action of Rebastinib against muscle atrophy and its efficacy in vivo remains to be elucidated, this compound shows great potential as a therapeutic agent for muscle atrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。