A sudden increase in ambient oxygen concentration after birth forces the metabolic switch from anaerobic glycolysis to oxidative phosphorylation, which contributes to the rapid decline of cardiomyocyte proliferation. Lactate dehydrogenase A (LDHA), a metabolic enzyme normally localized in the cytoplasm, has been reported to regulate cardiomyocyte proliferation via inducing metabolic reprogramming. Nuclear LDHA has been observed in multiple proliferative cells, whereas the role of LDHA nuclear translocation in cardiomyocyte proliferation remains unresolved. Here we found that the expression of nuclear LDHA was induced both in the infarct area of myocardial infarction (MI) in mice and hypoxic cardiomyocytes in vitro. Mechanically, mild hypoxia prompted metabolic reprogramming which motivated cardiomyocyte proliferation by alleviating reactive oxygen species (ROS), while severe hypoxia coincided with oxidative stress that induced cardiomyocyte cell cycle arrest. Interestingly, LDHA nuclear translocation in cardiomyocytes occurred in response to oxidative stress, and blocking of nuclear LDHA resulted in elevated ROS generation. Collectively, our findings uncover a non-canonical role of nuclear LDHA in maintaining redox balance and resisting cardiomyocyte cell cycle arrest.
Nuclear Lactate Dehydrogenase A Resists Cardiomyocyte Cell Cycle Arrest Induced by Oxidative Stress.
阅读:3
作者:Cao Mengfei, Luo Jie, Fu Kewei, Xu Yao, Wang Yinyu, Duan Junying, Chen Rui, Yuan Wei
期刊: | Journal of Cardiovascular Development and Disease | 影响因子: | 2.300 |
时间: | 2025 | 起止号: | 2025 Jul 21; 12(7):278 |
doi: | 10.3390/jcdd12070278 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。