FAM64A silencing inhibits the proliferation, migration, invasion, and epithelial-mesenchymal transition in ovarian cancer cells via activating Hippo pathway.

阅读:3
作者:Luo Jianxiu, Li Ruiyang
OBJECTIVE: Ovarian cancer (OC) is a highly aggressive malignancy in females. We aim to investigate the potential gene target and examine its impact on OC. METHODS: Hub genes were determined using protein-protein interaction networks based on differently expressed genes in GSE12470 and GSE14407 datasets. The impact of FAM64A on the malignant phenotype of OC cells was evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays. The epithelial-mesenchymal transition (EMT) process was assessed by determining the protein expression of E-cadherin, N-cadherin, and Vimentin. RESULTS: We identified the 18 hub genes of OC with substantial predictive value. FAM64A was selected as a candidate gene. The silencing of FAM64A suppressed the viability (si-NC: 0.78 ± 0.04, 0.95 ± 0.08; si-FAM64A: 0.58 ± 0.05, 0.64 ± 0.11), proliferation (si-NC: 100.00 ± 9.36, 100.00 ± 14.70; si-FAM64A: 34.79 ± 8.88, 44.55 ± 4.91), migration (si-NC: 61.92 ± 8.06, 60.08 ± 5.22; si-FAM64A: 45.88 ± 8.36, 37.78 ± 7.29), and invasion (si-NC: 130.00 ± 10.34, 144.00 ± 13.40; si-FAM64A: 81.00 ± 16.99, 115.60 ± 13.30) of A2780 and SKOV3 cells. FAM64A silencing reduced the EMT in OC cells. The Hippo pathway was identified as the central pathway implicated in the regulatory role of FAM64A in OC. The silencing of FAM64A caused an increase in the protein expression within the Hippo pathway in both A2780 and SKOV3 cells. CONCLUSION: Knockdown of FAM64A emerges as a promising therapeutic target for OC, exerting an inhibitory role in OC by activating the Hippo pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。