The role of cannabinoid CB1 receptors in the antinociceptive and reparative actions of mesenchymal stem cells in rats with peripheral neuropathic pain

大麻素 CB1 受体在大鼠周围神经性疼痛中间充质干细胞的抗伤害和修复作用中的作用

阅读:8
作者:Anna-Maria V Yerofeyeva, Sergey V Pinchuk, Svetlana N Rjabceva, Alla Y Molchanova

Abstract

Mesenchymal stem cells (MSCs) can produce antinociceptive and reparative effects. Presumably, the MSCs-induced antinociception may be partly due to the involvement of the endocannabinoid system. The study aimed to evaluate the antinociceptive and reparative effects of adipose-derived MSCs (ADMSCs) upon pharmacological modulation of cannabinoid CB1 receptor in peripheral tissues or on ADMSCs' membranes in a rat model of peripheral neuropathy. ADMSCs were injected into the area of rat sciatic nerve injury (i) with no additional treatments, (ii) at the tissue CB1 receptor activation by endogenous agonist anandamide (AEA) or blockade with a selective AM251 antagonist; and (iii) preincubated with AEA or AM251. The evaluation of CB1 receptor activity involved analyzing nociceptive responses, gait parameters, and histology. Transplantation of ADMSCs upon activation of CB1 receptors, both on AMSCs' membranes or in the area of nerve injury, accelerated the analgesia and recovery of dynamic gait parameters, abolished static gait disturbances, and promoted the fastest nerve regeneration. Only blockade of CB1 receptors on ADMSCs shortened ADMSCs-induced analgesia and decreased the number of preserved nerve fibers. CB1 receptors on ADMSCs significantly contribute to their pain-relieving and tissue-repairing capabilities by stimulating the growth factors secretion and suppressing the release of pro-inflammatory cytokines. Peripheral CB1 receptors do not significantly influence ADMSC-induced antinociception.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。