High-salt diet induces dyslipidemia through the SREBP2/PCSK9 pathway in dahl salt-sensitive rats

高盐饮食通过 SREBP2/PCSK9 通路诱导盐敏感大鼠血脂异常

阅读:30
作者:Ya-Nan Ou-Yang, Fen-Fen Deng, Yun-Jia Wang, Meng Chen, Peng-Fei Yang, Zhe Yang, Zhongmin Tian

Abstract

A high-salt diet is known to increase serum cholesterol levels; however, the underlying mechanism of salt-induced dyslipidemia in patients with salt-sensitivity remains poorly understood. We aimed to investigate whether high-salt diet (HSD) can induce dyslipidemia and elucidate the underlying mechanism of salt-induced dyslipidemia in Dahl salt-sensitive (SS) rats. Metabolomic and biochemical analyses revealed that the consumption of an HSD (8 % NaCl) significantly increased the serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in SS rats. The enzyme-linked immunosorbent assay demonstrated an increase in circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) levels, accompanied by a decrease in hepatic low-density lipoprotein receptor (LDLR) levels due to HSD consumption. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis revealed that HSD consumption activated sterol regulatory element-binding protein-2 (SREBP2) expression in the liver and kidney, resulting in upregulation of PCSK9 at the transcriptional level in the liver and at the translational level in the kidney, ultimately increasing circulating PCSK9 levels. The combined effects of HSD on the liver and kidney contributed to the development of hypercholesterolemia. Furthermore, an in vitro assay confirmed that high-salt exposure led to an increase in the protein expression of SREBP2 and PCSK9 secretion, thereby reducing low-density lipoprotein (LDL) uptake. This study, for the first time, shows that an HSD induces dyslipidemia through activation of the SREBP2/PCSK9 pathway, providing new insights into the prevention and treatment of dyslipidemia in patients with salt sensitivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。