Candidate biomarkers in brown adipose tissue for post-mortem diagnosis of fatal hypothermia

棕色脂肪组织中的候选生物标志物可用于致命性低温的死后诊断

阅读:2
作者:Miao Zhang #, Ning Wang #, Xiang-Shen Guo, Lin-Lin Wang, Peng-Fei Wang, Zhi-Peng Cao, Fu-Yuan Zhang, Zi-Wei Wang, Da-Wei Guan, Rui Zhao

Abstract

Post-mortem diagnosis of fatal hypothermia (FHT) is challenging in forensic practice because traditional morphological and biochemical methods lack specificity. Recent studies have reported that brown adipose tissue (BAT) is activated during cold-induced non-shivering thermogenesis in mammals, but BAT has not been used to diagnose FHT. The aim of this study was to identify novel biomarkers in BAT for FHT based on morphological changes and differential protein expression. Two FHT animal models were created by exposing mice to 4 or -20 °C at 50% humidity. Morphologically, the unilocular lipid droplet content was significantly increased in BAT of FHT model mice compared with that of control mice. Proteomics analysis revealed a total of 283 and 266 differentially expressed proteins (DEPs) between the 4 or -20 °C FHT subgroups and control group, respectively. In addition, 140 proteins were shared between the FHT subgroups. GO and KEGG analyses revealed that the shared DEPs were mainly enriched in pathways associated with metabolism, oxidative phosphorylation, and thermogenesis. Further screening (|log2FC| > 1.6, q-value (FDR) < 0.05) identified GMFB, KDM1A, DDX6, RAB1B, SHMT-1, CLPTM1, and LMF1 as candidate biomarkers of FHT. Subsequent validation experiments were performed in FHT model mice using classic immunohistochemistry and western blotting. RAB1B and GMFB expression was further verified in BAT specimens from human cases of FHT. The results demonstrate that BAT can be used as a target organ for FHT diagnosis employing RAB1B and GMFB as biological markers, thus providing a new strategy for the post-mortem diagnosis of FHT in forensic practice.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。