Effects of D-Serine and MK-801 on Neuropathic Pain and Functional Recovery in a Rat Model of Spinal Cord Injury

D-丝氨酸和 MK-801 对脊髓损伤大鼠神经性疼痛和功能恢复的影响

阅读:12
作者:Dongwoo Yu, Seul Ah Mun, Sang Woo Kim, Dae-Chul Cho, Chi Heon Kim, Inbo Han, Subum Lee, Sang-Woo Lee, Kyoung-Tae Kim

Conclusion

D-serine increases neuropathic pain after traumatic SCI by mediating the NMDA receptor. NMDA receptor antagonists alleviate neuropathic pain after traumatic SCI.

Methods

Anesthetized rats underwent T9 spinal cord contusion (130 kdyn). D-serine (500 and 1,000 mg/kg) and MK-801 hydrogen maleate (2.0 mg/kg) were injected daily for 2 weeks, starting the day after SCI. Functional outcomes were assessed according to the Basso, Beattie, and Bresnahan scale, while histological outcomes were evaluated based on lesion volume and spared tissue area. Mechanical allodynia and thermal hyperalgesia were evaluated by measuring the withdrawal threshold of a von Frey filament and hot/cold plate latency. Western blotting was performed to determine the expression levels of Trpv1, Nav1.9, calcitonin gene-related peptide (CGRP), and β-actin in damaged tissue.

Objective

Neuropathic pain is a common secondary complication of spinal cord injury (SCI). N-methyl-D-aspartate (NMDA) receptor activation is critical for hypersensitivity in neuropathic pain. This activation requires the binding of both glutamate and the D-serine co-agonist to the NMDA glycine site. We evaluated the effects of D-serine on neuropathic pain after SCI and explored the underlying molecular mechanisms.

Results

The withdrawal threshold values and latency of the D-serine group were significantly lower than those of the noninjection group. The MK-801 group showed higher threshold values and latencies than the other groups. Western blotting showed increased Nav1.9 and Trpv1 levels and lower CGRP levels in the D-serine group, whereas the MK-801 group showed the opposite results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。