Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata)

食物、压力和循环睾酮:雄性斑胸草雀(Taeniopygia guttata)的睾丸(而非大脑)参与信号整合

阅读:12
作者:Sharon E Lynn, Nicole Perfito, Daisy Guardado, George E Bentley

Abstract

Food abundance is closely associated with reproductive readiness in vertebrates. Food scarcity can activate the hypothalamo-pituitary-adrenal axis, decrease sex steroid secretion, and dampen reproductive behavior. However, the mechanisms underlying these transient effects are unclear. Gonadotropin inhibitory hormone (GnIH), a neuropeptide present in the brain and gonads, is also influenced by glucocorticoids and fasting in some species. We investigated whether fasting stress activated the GnIH system in zebra finches (Taeniopygia guttata), with the potential for downstream effects on reproductive physiology and behavior. We fasted or fed males ad libitum for 10h. Fasting increased corticosterone and decreased testosterone in circulation. To assess whether the decrease in testosterone was mediated by changes in the hypothalamus and/or the gonads, we (1) quantified GnRH- and GnIH-positive neurons in the hypothalamus, (2) assessed hypothalamic gene expression for GnRH and GnIH, and (3) examined gene expression for proteins involved in testosterone synthesis in fasted and control birds. No measure of hypothalamic neuropeptides was related to treatment or circulating steroids. However, birds with higher corticosterone had higher testicular GnIH expression and lower testosterone. StAR and LHR expression were lower in the testes of fasted birds than controls. Thus, the decrease in testosterone was not likely mediated by hypothalamic GnIH, but rather by direct actions of fasting and/or corticosterone on the testes, indicating that the testes can integrate and respond to cues of stress directly. Such local inhibition of testosterone synthesis may allow for rapid and reversible changes in physiology and behavior when conditions are inappropriate for breeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。