Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata)

食物、压力和循环睾酮:雄性斑胸草雀(Taeniopygia guttata)的睾丸(而非大脑)参与信号整合

阅读:2
作者:Sharon E Lynn, Nicole Perfito, Daisy Guardado, George E Bentley

Abstract

Food abundance is closely associated with reproductive readiness in vertebrates. Food scarcity can activate the hypothalamo-pituitary-adrenal axis, decrease sex steroid secretion, and dampen reproductive behavior. However, the mechanisms underlying these transient effects are unclear. Gonadotropin inhibitory hormone (GnIH), a neuropeptide present in the brain and gonads, is also influenced by glucocorticoids and fasting in some species. We investigated whether fasting stress activated the GnIH system in zebra finches (Taeniopygia guttata), with the potential for downstream effects on reproductive physiology and behavior. We fasted or fed males ad libitum for 10h. Fasting increased corticosterone and decreased testosterone in circulation. To assess whether the decrease in testosterone was mediated by changes in the hypothalamus and/or the gonads, we (1) quantified GnRH- and GnIH-positive neurons in the hypothalamus, (2) assessed hypothalamic gene expression for GnRH and GnIH, and (3) examined gene expression for proteins involved in testosterone synthesis in fasted and control birds. No measure of hypothalamic neuropeptides was related to treatment or circulating steroids. However, birds with higher corticosterone had higher testicular GnIH expression and lower testosterone. StAR and LHR expression were lower in the testes of fasted birds than controls. Thus, the decrease in testosterone was not likely mediated by hypothalamic GnIH, but rather by direct actions of fasting and/or corticosterone on the testes, indicating that the testes can integrate and respond to cues of stress directly. Such local inhibition of testosterone synthesis may allow for rapid and reversible changes in physiology and behavior when conditions are inappropriate for breeding.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。