Blocking HMGB1/RAGE Signaling by Berberine Alleviates A1 Astrocyte and Attenuates Sepsis-Associated Encephalopathy

通过小檗碱阻断 HMGB1/RAGE 信号传导可减轻 A1 星形胶质细胞并减弱脓毒症相关脑病

阅读:24
作者:Jian Shi, Huan Xu, María José Cavagnaro, Xingmei Li, Jia Fang

Abstract

As a life-threatening multiple organ dysfunction attributable to maladjusted host immune responses to infection, sepsis is usually the common pathway to serious prognosis and death for numerous infectious diseases all over the world. Sepsis-associated encephalopathy (SAE) is frequently complicated by septic conditions, and is one of the most important reasons for increased mortality and poor outcomes in septic patients which is still an urgent clinical problem need to be solved. In this research, a conspicuously discovery of treatment-related translational use for berberine was elaborated. The results revealed that berberine treatment significantly restored cognitive impairment in sepsis mice. Reduced expression levels of TNF-α, IL-1α, and C1qA were exhibited in the hippocampus of the berberine treatment group, and attenuated effect of declining neo-neuron, activation of microglia and astrocytes in the hippocampus of mice with sepsis were also found. Moreover, berberine inhibits microglia-stressed A1 astrocytes by inhibiting HMGB1 signaling was revealed, then the molecular mechanism of HMGB1/RAGE signaling inhibition leads to the better outcome of SAE was elucidated. To summarize, this research indicated that berberine targets HMGB1/RAGE signaling to inhibit microglia-stressed A1 astrocyte and neo-neuron decline, which consequently alleviates sepsis-induced cognitive impairment. Collectively, berberine may serve as potential therapeutic drug and HMGB1/RAGE signaling would be a novel target for medicine development for treating SAE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。